bài 1:Chứng tỏ rằng:
a) a = 20053 - 1 chia hết cho 2004
b) b= 20053+125 chia hết cho 2010
bài 2: Chứng tỏ rằng:
a) P = x6+1 chia hết cho x2+1
b) Q = x6-y6 chia hết cho x-y và chia hết cho x+y
bài 3: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 4: tìm cặp số (x,y) thỏa mãn đẳng thức:
( 2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32
giúp mình với,mk cảm ơn.
Bài 1 : Cho x2 - x = 3 . Tính giá trị biểu thức M= x4 - 2x3 +3x2 -2x +2
Bài 2 : CM : biểu thức A= n4 - 6n3 +27n2 -54n + 32 là số chẵn
Bài 3: Tìm nghiệm nguyên của phương trình x2 = y ( y+1) ( y+2) ( y+3)
Bài 4 : Cho a là số nguyên tố lớn hơn 3 , CMR : ( a^2 -1 ) chia hết cho 24
Bài 3 : Tính giá trị của biểu thức .
M*N với x=-2 . Biết rằng : M=-2x^2+3x+5 ; N=x^2-x+3 .
Bài 4 : Tính giá trị của đa thức , biết x=y+5 .
a ) x*(x+2)+y*(y-2)-2xy+65
b ) x^2+y*(y+2x)+75
Bài 5 : Cho biểu thức : M= (x-a)*(x-b)+(x-b)*(x-c)+(x-c)*(x-a)+x^2 . Tính M theo a , b , c biết rằng x=1/2a+1/2b+1/2c .
Bài 6 : Cho các biểu thức : A=15x-23y ; B=2x+3y . Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13 . . Ngược lại nếu B chia hết 13 thì A cũng chia hết cho 13 .
Bài 7 : Cho các biểu thức : A=5x+2y ; B=9x+7y
a . rút gọn biểu thức 7A-2B .
b . Chứng minh rằng : Nếu các số nguyên x , y thỏa mãn 5x+2y chia hết cho 17 thì 9x+7y cũng chia hết cho 17 .
1; Chứng minh:
a) (x-1)(x^2+x+1)=x^3-1
b)(x^3+x^2y+xy+y^3)(x-y)=x^4-y^4
2; Chứng minh biểu thức: n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Ai biết giúp mình với nha!!!!!!!!!!!!!!
Cho x, y là các số nguyên thỏa mãn: x^2 -2y= xy. Tìm GTLN của Q= x-y/x+y
CMR :
a. (n+3)^2 - (n-1)^2 luôn chia hết cho 8
b. (n+6)^2 - (n-6)^2 luôn chia hết cho 24
bài 2 . tìm cặp nghiệm (x,y)
a. y(x-2)+3x -6 =2
b. xy +3x -2y -7 =0
Bài 1: CMR:
Nếu 10x^2 + 5xy - 3y^2 =0 thì 2x-y/3x-y + 5y-x/3x+y = -3
Bài 2: Tìm các giá trị của số nguyên x sao cho:
1/x + 1/x+2 + x-2/x^2 + 2x nhận giá trị nguyên
Bài 3: Tìm a,b biết:
a) 1/x^2 - 4 = 9/x-2 + b/x+2
b) 1/x^3 +1 = a/x+1 + bx + c/x^2 -x +1
giúp mình vs m.n ơi
Tìm GTNN của biểu thức:
A=(x+y+1)^2/(xy+x+y) + (xy+x+y)/(x+y+1)^2 ( với x,y là các số thực dương)
2. Cho x, y là các số dương thỏa mãn x + y \(\le\) 1. Tìm giá trị nhỏ nhất của biểu thức
A = \(\frac{1}{x^2+y^2}+\frac{2}{xy}\)