§2. Bất phương trình và hệ bất phương trình một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Bảo Nam

tìm các số nguyên dương x,y thỏa mãn 11x+18y=120

le duc minh vuong
1 tháng 5 2016 lúc 18:52

 y = 7 - 4k +k - 13 Lại đặt k - 13 = t với t nguyên => k = 3t + 1 . Do đó : = 7 - 4 ( 3t + 1) +t = 3 - 11 = tx = 6k = 6 ( 3t+1) = 18t + 6 Thay các biểu thức của x và y vào (1), phương trình đượ c nghiệm đúng. Vậy các nghiệm nguyên của (1) đượ c biểu thị bở i công thức : {=18t+6y=3−11t vớ i t là số nguyên tùy ý mk nha các bạn !!! 

ngonhuminh
22 tháng 3 2017 lúc 17:02

\(11x+18y=120\Rightarrow x=\dfrac{120-18y}{11}=\dfrac{121-1-22y+4y}{11}\)\(\Leftrightarrow x=11-2y+\dfrac{4y-1}{11}\)

\(\left\{{}\begin{matrix}\dfrac{4y-1}{11}=k\\11k=4y-1\end{matrix}\right.\) \(\Rightarrow y=\dfrac{11k+1}{4}=\dfrac{12k-k+1}{4}=3k-\dfrac{k-1}{4}\)

\(\left\{{}\begin{matrix}\dfrac{k-1}{4}=n\\4n=k-1\end{matrix}\right.\) \(\Rightarrow k=4n+1\)

\(\Rightarrow\left\{{}\begin{matrix}y=3.\left(4n+1\right)-n=11n+3\\x=11-2\left(11n+3\right)+4n+1=6-18n\end{matrix}\right.\)

\(x,y>0\Rightarrow\left\{{}\begin{matrix}6-18n>0\\11n+3>0\end{matrix}\right.\) \(\left\{{}\begin{matrix}n< \dfrac{6}{18}\\n>\dfrac{-3}{11}\end{matrix}\right.\) \(\Rightarrow n=\left\{0\right\}\)

Nghiệm duy nhất của phương trình là:

\(\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)


Các câu hỏi tương tự
Phạm Thị Nguyệt Hà
Xem chi tiết
Anh Thư Trần
Xem chi tiết
Khánh Huỳnh Duy
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Nguyen Phuong
Xem chi tiết
quynhanhs0905 nguyen
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Alice
Xem chi tiết