y = 7 - 4k +k - 13 Lại đặt k - 13 = t với t nguyên => k = 3t + 1 . Do đó : = 7 - 4 ( 3t + 1) +t = 3 - 11 = tx = 6k = 6 ( 3t+1) = 18t + 6 Thay các biểu thức của x và y vào (1), phương trình đượ c nghiệm đúng. Vậy các nghiệm nguyên của (1) đượ c biểu thị bở i công thức : {=18t+6y=3−11t vớ i t là số nguyên tùy ý mk nha các bạn !!!
\(11x+18y=120\Rightarrow x=\dfrac{120-18y}{11}=\dfrac{121-1-22y+4y}{11}\)\(\Leftrightarrow x=11-2y+\dfrac{4y-1}{11}\)
\(\left\{{}\begin{matrix}\dfrac{4y-1}{11}=k\\11k=4y-1\end{matrix}\right.\) \(\Rightarrow y=\dfrac{11k+1}{4}=\dfrac{12k-k+1}{4}=3k-\dfrac{k-1}{4}\)
\(\left\{{}\begin{matrix}\dfrac{k-1}{4}=n\\4n=k-1\end{matrix}\right.\) \(\Rightarrow k=4n+1\)
\(\Rightarrow\left\{{}\begin{matrix}y=3.\left(4n+1\right)-n=11n+3\\x=11-2\left(11n+3\right)+4n+1=6-18n\end{matrix}\right.\)
\(x,y>0\Rightarrow\left\{{}\begin{matrix}6-18n>0\\11n+3>0\end{matrix}\right.\) \(\left\{{}\begin{matrix}n< \dfrac{6}{18}\\n>\dfrac{-3}{11}\end{matrix}\right.\) \(\Rightarrow n=\left\{0\right\}\)
Nghiệm duy nhất của phương trình là:
\(\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)