Cho 3 số thực dương x,y,z thỏa mãn \(x+y+z=3\) Tìm giá trị nhỏ nhất của
\(P=\dfrac{\left(2x+3y+z\right)^3}{3\sqrt[3]{z^2x^2}+1}+\dfrac{\left(2y+3z+x\right)^3}{3\sqrt[3]{x^2y^2}+1}+\dfrac{\left(2z+3x+y\right)^3}{3\sqrt[3]{y^2z^2}+1}\)
Cho 3 số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=\frac{1}{\sqrt{xyz}}\)
Tìm giá trị lớn nhất của P = \(\frac{2\sqrt{x}}{1+x}+\frac{2\sqrt{y}}{1+y}+\frac{z-1}{z+1}\)
Tìm x, y, z biết
a/ x : y : z = 2 : 3 : (-4)
và x - y + z = -125
b/ \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}\)
và 3x - 2y + z = 4
c/ \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
và x + y + z =147
d/ \(2x=3y;5y=7z\)
và 3x - 7y + 5z = 30
Bài 1: Giải bất phương trình
\(\dfrac{|x+2|-|x|}{\sqrt{4-(x)^{3}}}>0\)
\(\dfrac{3}{|x+3|-1}>|x+2|\)
\(\dfrac{9}{|x-5|-3}>|x-2|\)
Bài 2: Tùy thuộc vào giá trị m hãy xác định số nghiệm của phương trình
\(|x^{2}-2x-3|=m\)
Tìm các giá trị x thỏa mãn điều kiện của mỗi bất phương trình sau :
a. \(\dfrac{1}{x}< 1-\dfrac{1}{x+1}\)
b. \(\dfrac{1}{x^2-4}\le\dfrac{2x}{x^2-4x+3}\)
c. \(2\left|x\right|-1+\sqrt[3]{x-1}< \dfrac{2x}{x+1}\)
d. \(2\sqrt{1-x}>3x+\dfrac{1}{x+4}\)
cho x,y thuộc Z ,x,y khác 0, x^2+y^2>x^2y^2
CMR:x^+y^2>4
cho \(\frac{x}{y+z}\)+\(\frac{y}{x+z}\)+\(\frac{z}{x+y}\)=1
tính 2019 + \(\frac{x^2}{y+z}\)+\(\frac{y^2}{z+x}\)+\(\frac{z^2}{x+y}\)
Cho a,b,c là các số thực dương thay đổi và thỏa mãn \(a+b+c=\dfrac{3\sqrt{3}}{\sqrt{2}}\)
Tìm giá trị lớn nhất của biểu thức \(M=\dfrac{1}{a^2+b^2+3}+\dfrac{1}{b^2+c^2+3}+\dfrac{1}{c^2+a^2+3}\)
Giải các bất phương trình sau
1) \(\dfrac{\text{x - 2}}{x+1}-\dfrac{3}{x+2}>0\) 2) \(\dfrac{\text{x + 1}}{x+2}+\dfrac{x}{x-3}\le0\)
3) \(\dfrac{\text{x}^2+2x+5}{x+4}>x-3\) 4) \(\sqrt{\text{x^2}-3x+2}\ge3\)