Lời giải:
Nếu $n$ là số nguyên dương chẵn thì $n^4+4^n$ là số nguyên dương chẵn và lớn hơn $2$ nên không thể là số nguyên tố (loại)
Nếu $n$ là số nguyên dương lẻ:
\(n^4+4^n=(n^2)^2+(2^n)^2=(n^2+2^n)^2-2.n^2.2^n\)
\(=(n^2+2^n)^2-(n.2^{\frac{n+1}{2}})^2=(n^2+2^n-n.2^{\frac{n+1}{2}})(n^2+2^n+n.2^{\frac{n+1}{2}})\)
Để $n^4+4^n$ là số nguyên tố thì nó chỉ có đúng 2 ước nguyên tố (1 và chính nó). Do đó 1 trong 2 thừa số \(n^2+2^n-n.2^{\frac{n+1}{2}};n^2+2^n+n.2^{\frac{n+1}{2}}\) phải bằng $1$.
Vì \(n^2+2^n-n.2^{\frac{n+1}{2}}< n^2+2^n+n.2^{\frac{n+1}{2}}\) nên \(n^2+2^n-n.2^{\frac{n+1}{2}}=1\)
\(\Leftrightarrow 2n^2+2^{n+1}-2n.2^{\frac{n+1}{2}}=2\)
\(\Leftrightarrow (n-2^{\frac{n+1}{2}})^2+n^2=2\). Với $n\geq 3$ thì hiển nhiên vô lý nên $n< 3$. Mà $n$ lẻ nên $n=1$. Thử lại thấy đúng
Vậy $n=1$