Bài 2: Cực trị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hương Giang

Tìm các số a, b, c, d sao cho hàm số \(f\left(x\right)=ax^3+bx^2+cx+d\) đạt cực tiểu tại \(x=0;f\left(0\right)=0\) và đạt cực tiểu tại \(x=1;f\left(1\right)=1\)

Phạm Thảo Vân
23 tháng 4 2016 lúc 11:42

Ta có \(f'\left(x\right)=3ax^2+2bx+c;f"\left(x\right)=6ax+2b\)

Hàm số \(f\left(x\right)\) đạt cực tiểu tại \(x=0\) khi và chỉ khi 

\(\begin{cases}f'\left(0\right)=0\\f"\left(0\right)>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\2b>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\b>0\end{cases}\left(1\right)\)

Hàm số \(f\left(x\right)\) đạt cực đại tại \(x=1\) khi và chỉ khi \(\begin{cases}f'\left(1\right)=0\\f"\left(1\right)< 0\end{cases}\)\(\Leftrightarrow\begin{cases}3a+2b+c=0\\6a+2b< 0\end{cases}\)

\(\begin{cases}f\left(0\right)=0\\f\left(1\right)=1\end{cases}\)\(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) \(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) (3)

Từ (1), (2), (3) suy ra \(a=-2;b=3;c=0;d=0\)

Kiểm tra lại \(f\left(x\right)=-2x^3+3x^2\)

Ta có \(f'\left(x\right)=-6x^2+6x;f"\left(x\right)=-12x+6\)

\(f"\left(0\right)=6>0\), hàm số đạt cực tiểu tại \(x=0\)

\(f"\left(1\right)=-6< 0\), hàm số đạt cực đại tại \(x=1\)

Vậy \(a=-2;b=3;c=0;d=0\)


Các câu hỏi tương tự
Trần T.Anh
Xem chi tiết
Trương Quang Đức
Xem chi tiết
xữ nữ của tôi
Xem chi tiết
Lê Việt Hiếu
Xem chi tiết
Trần Thụy Nhật Trúc
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Thành Công
Xem chi tiết
Nguyễn Đức Đạt
Xem chi tiết
Nguyễn Việt Khang
Xem chi tiết