\(\Leftrightarrow tanx\left(tanx-2\right)+m\left(tanx-2\right)=0\)
\(\Leftrightarrow\left(tanx-2\right)\left(tanx-m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=2\\tanx=m\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(2\right)+k\pi\\tanx=m\left(1\right)\end{matrix}\right.\)
Do \(2>\sqrt{3}\Rightarrow\frac{\pi}{3}< arctan\left(2\right)< \frac{\pi}{2}\Rightarrow x=arctan\left(2\right)+k\pi\) có đúng 1 nghiệm trên khoảng đã cho
\(\Rightarrow\) Để pt đã cho có 3 nghiệm pb \(\Leftrightarrow tanx=m\) có 2 nghiệm pb
\(\Rightarrow\left\{{}\begin{matrix}m\ne2\\0\le m\le\sqrt{3}\end{matrix}\right.\) \(\Rightarrow0\le m\le\sqrt{3}\)