\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{2n+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}\)
\(=n\times\dfrac{2}{3}=\)+∞
\(a,lim\dfrac{7n^2-3n}{n^2+2}\)
\(=lim\dfrac{7-\dfrac{3}{n}}{1+\dfrac{2}{n^2}}\)
\(=\dfrac{7-0}{1+0}=\dfrac{7}{1}=7\)
\(\lim\dfrac{2n^2+1}{3n^3-3n+3}=\lim\dfrac{2+\dfrac{1}{n^2}}{3n-\dfrac{3}{n}+\dfrac{3}{n^3}}=\dfrac{2}{+\infty}=0\)