\(\dfrac{2x}{x+1}\in Z\Rightarrow2x⋮x+1\Rightarrow2x+2-2⋮x+1\Rightarrow2\left(x+1\right)-2⋮x+1\)
Mà \(2\left(x+1\right)⋮x+1\Rightarrow-2⋮x+1\Rightarrow x+1\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\Rightarrow x=\left\{-3;-2;0;1\right\}\)
\(\dfrac{2x}{x+1}\left(đk:x\ne-1\right)=\dfrac{2\left(x+1\right)}{x+1}-\dfrac{2}{x+1}=2-\dfrac{2}{x+1}\)
Để phân thức đã cho có giá trị nguyên thì:
\(x+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{0;-2;1;-3\right\}\)
\(\dfrac{2x}{x+1}=\dfrac{2\left(x+1\right)-2}{x+1}=2-\dfrac{2}{x+1}\)
Biểu thức nguyên khi
\(2⋮x+1\Leftrightarrow x+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{-3;-2;0;1\right\}\)
Để \(\dfrac{2x}{x+1}\) là số nguyên thì \(2x⋮x+1\)
\(\Leftrightarrow-2⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{0;-2;1;-3\right\}\)