Lời giải:
Đặt $f(x)=-x^2+4x-3$
Theo tính chất của đồ thị hàm số $|f(x)|$ thì để $|-x^2+4x-3|=2m$ có 3 nghiệm phân biệt thì $2m=f(x)_{\max}$
Dễ thấy:
$f(x)=1-(x-2)^2\leq 1$
$\Rightarrow f(x)_{\max}=1$
$\Rightarrow 2m=1\Rightarrow m=\frac{1}{2}$
Lời giải:
Đặt $f(x)=-x^2+4x-3$
Theo tính chất của đồ thị hàm số $|f(x)|$ thì để $|-x^2+4x-3|=2m$ có 3 nghiệm phân biệt thì $2m=f(x)_{\max}$
Dễ thấy:
$f(x)=1-(x-2)^2\leq 1$
$\Rightarrow f(x)_{\max}=1$
$\Rightarrow 2m=1\Rightarrow m=\frac{1}{2}$
(Em cần lời giải chi tiết ạ! Cảm ơn mọi người)
Câu 1: Tập hợp các giá trị thực của tham số m để phương trình \(\sqrt{x^2+2x+2m}=2x+1\) có hai nghiệm phân biệt là S = (a;b]. Khi đó P = a.b là....
Câu 2: Cho phương trình \(\sqrt{-x^2+4x-3}=\sqrt{2m+3x-x^2}\). Để phương trình có nghiệm thì m ϵ [a;b]. Giá trị \(a^2+b^2=?\)
Câu 3: Biết phương trình \(x^4-3mx^2+m^2+1=0\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\). Tính M = x1+x2+x3+x4+x1x2x3x4
Cho phương trình x2 - (2m+1)x + m2 +1 = 0 , với m là tham số . Tìm tất cả các giá trị m ∈ Z để phương trình có hai nghiệm phân biệt x1 , x2 sao cho biểu thức \(P=\dfrac{x_1x_2}{x_1+x_2}\)
có giá trị là số nguyên
Tìm tất cả các giá trị của tham số m để phương trình \(x^2-2mx+m+2=0\) có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x^3_1+x_2^3\le16\)
Tìm tất cả các giá trị thực của m để phương trình \(4^x-2^{x+1}+m=0\) có 2 nghiệm thực phân biệt
Cho phương trình : \(x^4-2\left(m+1\right)x^2+m^2+m+2=0\) tìm tất cả các giá trị của m để phương trình có bốn nghiệm phân biệt lớn hơn -1
Cho phương trình: 3\(\sqrt{x^2-2x+3}\) =x2-2x+m với tham số m∈R.Tìm tất cả các giá trị của tham số m để phương trình đã cho có đúng hai nghiệm phân biệt thuộc đoạn 0,3
Cho phương trình \(4^x-2^{x+2}+m=0\). Tìm tập hợp tất cả giá trị của tham số \(m\) để phương trình đã cho có hai nghiệm phân biệt
Tìm m để phương trình \(\left(x^2-4x\right)^2-3\left(x-2\right)^2+m=0\) có 4 nghiệm phân biệt