Tìm điều kiện của số nguyên m để hệ phương trình
\(\hept{\begin{cases}mx-y=a\\x+\left(m+1\right)y=b\end{cases}}\)
có nghiệm duy nhất (x;y) (x,y là các số nguyên)
với mọi giá trị nguyên của a,b
Tìm a,b để hệ
\(\hept{\begin{cases}\left(m+3\right)x+4y=5a+3b+m\\x+my=ma-2b+2m-1\end{cases}}\)
có nghiệm với mọi giá trị m
Tìm các giá trị của a và b để các hệ phương trình sau có vô số nghiệm ?
a) \(\left\{{}\begin{matrix}3x+ay=5\\2x+y=b\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}ax+2y=a\\3x-4y=b+1\end{matrix}\right.\)
Tìm điều kiện của tham số m để nghiệm của hệ phương trình
\(\hept{\begin{cases}x+2y=m-1\\2x-y=m+3\end{cases}}\)
có nghiệm duy nhất (a,b) và \(a^2+b^2\) nhỏ nhất
Tìm giá trị của tham số m sao cho hệ bất phương trình có nghiệm duy nhất
\(\left\{{}\begin{matrix}x^2+2x+m\le0\\x^2-4x-6m\le0\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-2\right)x+my=3\\x-4my=4\end{matrix}\right.\) .Tìm m để hệ đã cho có nghiệm duy nhất.
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}x+2y-3z=2\\2x+7y+z=5\\-3x+3y-2z=-7\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}-x-3y+4z=3\\3x+4y-2z=5\\2x+y+2z=4\end{matrix}\right.\)
tìm a để hệ phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}\left(x+1\right)^2=y+a\\\left(y+1\right)^2=x+a\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\)