Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-2\right)x+my=3\\x-4my=4\end{matrix}\right.\) .Tìm m để hệ đã cho có nghiệm duy nhất.
1.cho hệ PT:
\(\left\{{}\begin{matrix}x^2+y^2=2\left(m+1\right)\\\left(x+y\right)^2=4\end{matrix}\right.\)
xác định m để hệ PT có nghiệm duy nhất
2. giải HPT
\(\left\{{}\begin{matrix}x+y-\sqrt{xy}\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)
- giúp ạ !
Tìm giá trị của tham số m sao cho hệ bất phương trình có nghiệm duy nhất
\(\left\{{}\begin{matrix}x^2+2x+m\le0\\x^2-4x-6m\le0\end{matrix}\right.\)
Tìm các giá trị của a và b để các hệ phương trình sau có vô số nghiệm ?
a) \(\left\{{}\begin{matrix}3x+ay=5\\2x+y=b\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}ax+2y=a\\3x-4y=b+1\end{matrix}\right.\)
1,\(\left\{{}\begin{matrix}x^2+xy-3x+y=0\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=22\\xy\left(x-1\right)\left(y-2\right)=1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^2-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}x+y+x^2+y^2=8\\xy\left(x+1\right)\left(y+1\right)=12\end{matrix}\right.\)
giải các hệ phương tình sau :
1) \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x\left(3x+2y\right)\left(x+1\right)=12\\x^2+2y+4x-8=0\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-3y=\dfrac{4y}{x}\\y-3x=\dfrac{4x}{y}\end{matrix}\right.\)
giúp mình với ạ ><
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\)
Bài 5 : Giải hệ phương trình sau \(\left\{{}\begin{matrix}x+y+x^2+y^2=8\\xy\left(x+1\right)\left(y+1\right)=12\end{matrix}\right.\)