Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\Leftrightarrow x=y=z\)
Từ dữ liệu đề bài: \(x^{2017}-y^{2018}=0\Leftrightarrow x^{2017}-x^{2018}=0\)
\(\Rightarrow x^{2018}-x^{2017}=0\Leftrightarrow x^{2017}\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=1\end{matrix}\right.\)
Vậy \(x=y=z=1\)