Cho \(n\in Z\). Chứng minh :
a) \(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}\in Z\)
b)\(B=\frac{n^4}{24}+\frac{n^3}{4}+\frac{11n^2}{24}+\frac{n}{4}\in Z\)
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(B=\frac{1}{1010.2018}+\frac{1}{1011.2017}+...+\frac{1}{2018.1010}\)
CMR: \(\frac{A}{B}\in Z\)
Tìm \(x\in Z\) để \(A,B\in Z\)
a) \(A=\frac{2x^3-6x^2+x-8}{x-3}\)
b) \(B=\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
Tìm \(x\in Z\) để \(A\in Z,B\in Z\) với \(A=\frac{3x^2-8x-1}{x-3}\) ; \(B=\frac{x^3+2x^2+5x+10}{x^2+4x+4}\)
a, rut gon A
b, tim x de a<-1
c, tim cac gia tri nguyen cua x de A co gia tri nguyen
cho bthuc B = \(\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x-2}\right)chia\left(x-2+\frac{16-x^2}{x+2}\right)\)rut gon B tính b khi /x/ = 1/2tim x de b=2tim x \(\in\) z de b \(\in\) z1/ CMR:
a) với mọi x khác 1 biểu thức:
P = \(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\) luôn nhận giá trị dương
b) với mọi x, biểu thức:
Q = \(\frac{-2x^2-2}{x^4+2x^3+6x^2+2x+5}\) luôn nhận giá trị âm
2/ Cho \(x\ne0,y\ne0,z\ne0\) và x = y+z
\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
CMR: \(\frac{1}{x^2}-\frac{1}{y^2}-\frac{1}{z^2}=1\)
3/ Cho \(a\ne0,b\ne0,c\ne0\) và
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)=\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\)
CMR: x = y = z = 0
Cho 3 số thực a,b,c \(\ne0\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\).Chứng minh rằng trong 3 số a,b,c luôn có 2 số đối nhau ..
Từ đó suy ra \(\forall n\in Z\) lẻ thì \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
HELP...... MAI MÌNH PHẢI NỘP RỒI
MÌNH CẢM ƠN
Cho \(a,b\in\) N* thỏa \(\frac{a+1}{b}+\frac{b+1}{a}\in Z\). Chứng minh ước chung lớn nhất của a, b không lớn hơn \(\sqrt{a+b}\)
a) So \(M=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)vs-\frac{1}{2}\)
b) \(N=\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm \(x\in Z\) để \(N\)là số nguyên dương