giải và biện luận các phương trình sau
a, \(\frac{mx+5}{10}+\frac{x+m}{4}=\frac{m}{20}\)
b, \(\left(m+2\right)x+4\left(2m+1\right)=m^2+4\left(m-1\right)\)
trong đó x là ẩn , m,a,b là tham số
Giải Phtr
a ) \(\frac{2x+1}{6}-\frac{x-2}{4}=\frac{3-2x}{3}-x\)
b ) \(\frac{x-29}{1970}+\frac{x-27}{1972}=\frac{x-1970}{29}+\frac{x-1972}{27}\)
Tuyết ơi, gửi nốt cái n .
Giải phương trình sau :
a) \(\frac{x^2-2x+1}{x^2-2x+2}+\frac{x^2-2x+2}{x^2-2x+3}=\frac{7}{6}\)
b) \(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
Giải phương trình
a) \(\frac{2}{x+\frac{1}{1+\frac{x+1}{x-2}}}=\frac{6}{3x-1}\)
b) \(\frac{3x-1}{x-1}-\frac{2x+2}{x+2}+\frac{4}{x^2+2x-3}=1\)
Bài 1: Giải phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\left(x+\frac{1}{9}\right)\times\left(2x-5\right)< 0\)
c) \(\left(4x-1\right)\times\left(x^2+12\right)\times\left(-x+4\right)>0\)
d) \(\frac{2x+\frac{3x-4}{5}}{15}< \frac{\frac{3-x}{2}+7x}{5}+1-x\)
Bài 2:
a) \(\frac{m-2}{4}+\frac{3m+1}{3}\)có giá trị âm
b)\(\frac{m-4}{6m+9}\)có giá trị dương
c) CMR: \(-x^2+4x-9\le-5\)với mọi x
d) CMR: \(x^2-2x+9\ge8\)với mọi số thực x
bài 1: Tính giá trị biểu thức
A = x(3x-y)-(3x+1)y tại x = 4/3; y = -1
B = \(3\frac{1}{117}.\frac{1}{119}-\frac{4}{117}.5\frac{118}{119}-\frac{8}{39}\)
Bài 2: Tìm m và n để hai đa thức đồng nhất:
f(x)=(m-1)x^2+3x+1
g(x) = x^2-nx+1
Giải phương trình sau :
\(x+\frac{x}{x+2}+\frac{x+3}{x^2+5x+6}+\frac{x+4}{x^2+6x+8}=1\)
M = \(\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right)\div\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Tìm Tập xác định
b) Rút gọn M
c) Tìm M khi \(\left|x\right|\) = \(\frac{1}{2}\)
d) Tìm \(x\in Z\) để \(M\in Z\)
1 )cho biểu thức \(A=\frac{x^2-6x+9}{2x-6}\)
c) tìm giá trị của biến x để biểu thức A có giá trị = 1
2 ) rút gọn biểu thức
a) \(\left(\frac{x^2}{x^3-4}+\frac{6}{6-3x}+\frac{1}{x+2}\right):x-2+\frac{10-x^2}{x+2}\)
b) \(\frac{4x^2-2x+7}{2x-1}\)
c) \(\frac{3x^2-x+3}{3x+2}\)
d) \(\frac{5x+19^2}{x^2+3}\)
help me giúp tớ với tớ cần gấp sáng mai học rồi giải giùm tớ mấy câu này với