thực hiện phép tính
A=\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2-\sqrt{2-\sqrt{3}}}}\)
B=\(\dfrac{6+4\sqrt{2}}{\sqrt{2+\sqrt{6+4\sqrt{2}}}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)
Thực hiện phép tính:
a. \(2\sqrt{16}+\sqrt{2}.\sqrt{0,02}-\dfrac{\sqrt{12,1}}{\sqrt{0,1}}\)
b. \(5\sqrt{20}-4\sqrt{45}+\dfrac{15}{\sqrt{5}}\)
c. \(\left(\dfrac{\sqrt{6}-\sqrt{3}}{5\sqrt{2}-5}+\dfrac{\sqrt{5}}{5}\right):\dfrac{2}{\sqrt{5}-\sqrt{3}}\)
d. \(\dfrac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}\)
Thực hiện các phép tính:
a. \(2\sqrt{16}+\sqrt{2}.\sqrt{0.02}-\dfrac{\sqrt{12,1}}{\sqrt{0,1}}\)
b. \(5\sqrt{20}-4\sqrt{45}+\dfrac{15}{\sqrt{5}}\)
c. \(\left(\dfrac{\sqrt{6}-\sqrt{3}}{5\sqrt{2}-5}+\dfrac{\sqrt{5}}{5}\right):\dfrac{2}{\sqrt{5}-\sqrt{3}}\)
d. \(\dfrac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}\)
thực hiện phép tính
A=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B=\(\left(5+2\sqrt{6}\right)\cdot\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
Tính:
a) \(\dfrac{\sqrt{7}-5}{2}-\dfrac{6-2\sqrt{7}}{4}+\dfrac{6}{\sqrt{7}-2}-\dfrac{5}{4+\sqrt{7}}\)
b) \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)
c) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
Thực hiện phép tính:
\(\dfrac{2\sqrt{12}-\sqrt{6}}{2\sqrt{6}-\sqrt{3}}+\dfrac{10+\sqrt{5}}{2\sqrt{15}+\sqrt{3}}\)
Thực hiện phép tính:
a. \(2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-2\sqrt{50}\)
b. \(\sqrt{6+2\sqrt{5}}+\sqrt{\left(\sqrt{5}-7\right)^2}\)
c. \(\dfrac{1}{2-\sqrt{6}}-\dfrac{1}{2+\sqrt{6}}\)
thực hiện phép tính
A=\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
B=\(\sqrt{\dfrac{3-\sqrt{5}}{\sqrt{10}+\sqrt{2}}}\cdot\left(3+\sqrt{5}\right)\)
Tính:
E=(\(\sqrt{18}-3\sqrt{6}+\sqrt{2}\)) \(\sqrt{2}+6\sqrt{3}\)
G=\(\left(2\sqrt{2}-\sqrt{5}+\sqrt{18}\right)\).\(\left(\sqrt{50}+\sqrt{5}\right)\)
H=\(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\).\(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)