Giải:
a) \(\left(x^2+2x+1\right)\left(x+1\right)\)
\(=x^2.x+2x.x+1.x+x^2.1+2x.1+1.1\)
\(=x^3+2x^2+x+x^2+2x+1\)
\(=x^3+3x^2+3x+1\)
b) \(\left(x^3-x^2+2x-1\right)\left(5-x\right)\)
\(=x^3.5-x^2.5+2x.5-1.5+x^3.\left(-x\right)-x^2.\left(-x\right)+2x.\left(-x\right)-1.\left(-x\right)\)
\(=5x^3-5x^2+10x-5-x^4+x^3-2x^2+x\)
\(=6x^3-7x^2+11x-5-x^4\)
c) \(\left(x-5\right)\left(x^3-x^2+2x-1\right)\)
\(=x.x^3-5.x^3+x.\left(-x^2\right)-5.\left(-x^2\right)+x.2x-5.2x+x.\left(-1\right)-5.\left(-1\right)\)
\(=x^4-5x^3-x^3+5x^2+2x^2-10x-x+5\)
\(=x^4-6x^3+7x^2-11x+5\)
Chúc bạn học tốt!!!
lớp 8 Phạm Hoàng Giang không chơi kiểu lớp 7
đúng làm 8 mà làm
\(A=\left(x^2+2x+1\right)\left(x+1\right)=\left(x+1\right)^2\left(x+1\right)=\left(x+1\right)^3\)
\(A=x^3+3x^2+3x+1\)