a: \(=\sqrt{15}-3+\sqrt{15}=2\sqrt{15}-3\)
b: \(=\left(\sqrt{7}+\sqrt{3}-\sqrt{7}+\sqrt{3}\right)-2\sqrt{3}+2\)
\(=2\)
c: \(=\left(\sqrt{3}-\sqrt{2}\right)\cdot3\cdot\left(\sqrt{3}+\sqrt{2}\right)=3\)
a: \(=\sqrt{15}-3+\sqrt{15}=2\sqrt{15}-3\)
b: \(=\left(\sqrt{7}+\sqrt{3}-\sqrt{7}+\sqrt{3}\right)-2\sqrt{3}+2\)
\(=2\)
c: \(=\left(\sqrt{3}-\sqrt{2}\right)\cdot3\cdot\left(\sqrt{3}+\sqrt{2}\right)=3\)
Thực hiện các phép tính:
a. \(\left(\sqrt{80}+\sqrt{20}\right):\sqrt{45}\)
b. \(\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{18}+\sqrt{27}\right)\)
c. \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}-\dfrac{6}{\sqrt{15+3}}\)
d. \(\left(\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\right)-\dfrac{4}{\sqrt{3}+1}\)
thực hiện phép tính
A=\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
B=\(\sqrt{\dfrac{3-\sqrt{5}}{\sqrt{10}+\sqrt{2}}}\cdot\left(3+\sqrt{5}\right)\)
Rút gọn:
a) \(2\sqrt{98}-3\sqrt{18}+\dfrac{1}{2}\sqrt{32}\)
b)\(\left(5\sqrt{2}+2\sqrt{5}\right).\sqrt{5}-\sqrt{250}\)
c)\(\left(2\sqrt{3}-5\sqrt{2}\right).\sqrt{3}-\sqrt{36}\)
d)\(3\sqrt{48}+2\sqrt{27}-\dfrac{1}{3}\sqrt{243}\)
e) \(6\sqrt{\dfrac{1}{3}}+\dfrac{9}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}\)
f)\(4\sqrt{\dfrac{1}{2}}-\dfrac{6}{\sqrt{2}}\dfrac{2}{\sqrt{2}+1}\)
Tính:
E=(\(\sqrt{18}-3\sqrt{6}+\sqrt{2}\)) \(\sqrt{2}+6\sqrt{3}\)
G=\(\left(2\sqrt{2}-\sqrt{5}+\sqrt{18}\right)\).\(\left(\sqrt{50}+\sqrt{5}\right)\)
H=\(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\).\(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)
thực hiện phép tính :
a) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
b) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
c) \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d) \(\dfrac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
e) \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
f) \(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
mọi người giúp mjinh với ạmjk đang cần gấp lắm
không dùng máy tính , tính giá trị của các biểu thức sau
1)\(\left(1+\sqrt{2}+\sqrt{3}\right)\cdot\left(1+\sqrt{2}+\sqrt{3}\right)\)
2)\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}\)
3)\(\dfrac{2+\sqrt{3}}{\sqrt{7-4\sqrt{3}}}-\dfrac{2-\sqrt{3}}{\sqrt{7+4\sqrt{3}}}\)
4)\(\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
5)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
6)\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
Rút gọn căn bậc hai theo hằng đẳng thức:
a)\(\left(4\sqrt{2}+\sqrt{30}\right).\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
b)\(2.\left(\sqrt{10}-\sqrt{2}\right).\left(4+\sqrt{6-2\sqrt{5}}\right)\)
c)\(\left(7+\sqrt{14}\right).\sqrt{9-2\sqrt{14}}\)
d)\(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)
e) \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
f)\(\sqrt{2-\sqrt{3}.\left(\sqrt{6}+\sqrt{2}\right)}\)
g) \(\sqrt{2}\sqrt{8+3\sqrt{7}}\)
h) \(\sqrt{11+6\sqrt{2}}\)
rÚT GỌN: G=\(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{6}}-\sqrt{2}\)
chững minh : a) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt[]{6}=9\)
b)\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
c)\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
giúp mk với tối mai mk nạp rồi
\(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6-\sqrt{6}}{\sqrt{6}}\)
\(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)
\(\left(\dfrac{15}{3-\sqrt{3}}-\dfrac{2}{1-\sqrt{3}}+\dfrac{3}{\sqrt{3}-2}\right):\sqrt{28+10\sqrt{3}}\)