a: \(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)^2}=\dfrac{x+y}{2}\)
b: \(=\dfrac{x^2\left(3x-5\right)+3\left(3x-5\right)}{3x-5}=x^2+3\)
a: \(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)^2}=\dfrac{x+y}{2}\)
b: \(=\dfrac{x^2\left(3x-5\right)+3\left(3x-5\right)}{3x-5}=x^2+3\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
thực hiện phép tính;
a,\(\dfrac{\left(3a^2b\right)^3\left(ab^3\right)^2}{\left(a^2b^2\right)^4}\)
b,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
c,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
d,\(\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
thực hiện phép tính:
a,\(\left(2x^3-x^2+5x\right):x\)
b,\(\left(3x^4-2x^3+x^2\right):\left(-2x\right)\)
c,\(\left(-2x^5+3x^2-4x^3\right):2x^2\)
d,\(\left(x^3-2x^2y+3xy^2\right):\left(\dfrac{-1}{2}x\right)\)
e,\(\left(3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right):5\left(x-y\right)^2\)
Câu 1 : Thực hiện phép tính :
a) \(6x^2\left(3x^2-4x+5\right)\)
b) \(\left(3x-y\right)^2\)
c) \(\left(x+3\right)\left(x-3\right)-x\left(x-5\right)\)
d) \(\left(x+2\right)^2+\left(x-3y\right)^2-\left(2x+4\right)\left(x-3\right)\)
Câu 2 : Phân tích đa thức :
a) \(14x^2y-21xy^2+28x^2y^2\)
b) \(27x^3-\dfrac{1}{27}\)
c) \(3x^2-3xy-5x+5y\)
d) \(x^2+7x+12\)
Câu 3 : Tìm x :
a) \(5x\left(x-2\right)+3x-6=0\)
b) \(x^3=9x\)
c) \(\left(x+2\right)\left(x-2\right)=x\left(x-1\right)\)
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)
Chứng minh biểu thức sau ko phụ thuộc vào x:
\(A=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(C=4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)
\(D=5\left(3x^{n+1}-y^{n-1}\right)+3\left(x^{n+1}+5y^{n-1}\right)-5\left(3x^{n+1}+2y^{n-1}\right)\)
Thực hiện phép tính:
\(a,\left(2x^3+y^2-7xy\right).4xy^2\)
\(b,\left(2x^3-x-1\right)\left(5x-2\right)\)
\(c,\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(d,\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
Thực hiện phép tính:
\(a,\left(x-\dfrac{x^2+y^2}{x+y}\right)\left(\dfrac{1}{y}+\dfrac{2}{x-y}\right)\)
\(b,\left(\dfrac{2}{x^2-1}+\dfrac{x^2-3}{3x^2-1}\right):\left[\dfrac{1}{x}-\dfrac{2x\left(x^2-3\right)}{\left(x^2-1\right)\left(3x^2-1\right)}\right]\)