Ta có : \(\frac{x+4}{5}=\frac{20}{x+4}\)
\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)
\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)
\(\Rightarrow\left(x+4\right)^2=\left(\pm10\right)^2\)
\(\Leftrightarrow\left(x+4\right)=10\)
\(\Rightarrow x=10-4\)
\(\Rightarrow x=6\)
hoặc
\(\Leftrightarrow\left(x+4\right)=-10\)
\(\Rightarrow x=-10-4\)
\(\Rightarrow x=-14\)
\(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\left(x+4\right)^2=100\)
\(\left(x+4\right)^2=\left(\pm10\right)^2\)
\(x+4=\pm10\)
\(x+4=10\)\(x=10-4\)
\(x=6\)
\(x+4=-10\) \(x=-10-4\)
\(x=-14\)
Vậy \(x\in\left\{-14;6\right\}\)
\(\frac{x+4}{20}\) = \(\frac{5}{x+4}\)
\(\Rightarrow\) (x+4)(x+4) = 5.20 =100
(x+4)2 =102
x+4 = 10x=6
x+4 = -10x= -14
Vậy :............
\(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\left(x+4\right)\left(x+4\right)=20.5\)
\(\left(x+4\right)^2=100\)
\(\left(x+4\right)^2=10^2\)
\(x+4=10\)
\(x=10-4\)
\(x=6\)
Hoặc : \(x+4=-10\)
\(x=-10-4\)
\(x=-14\)