Câu a
Câu a
Trong các bộ ba đoạn thẳng có độ dài như sau, trường hợp nào không là độ dài ba cạnh của một tam giác?
A.3m, 4m, 1m
B.8m, 8m, 5m
C.6m, 4m, 3m
D.3m, 3m, 3m
Cho tam giác ABC, có AB = 6cm, AC = 8cm, BC = 10cm. Q là hình chiếu của A trên cạnh BC
a. Cm tam giác ABC vuông
b. Tính BQ biết AQ = 4,8cm
c. Tia phan giác của góc B cắt AC tại D. Vẽ H là hình chiếu của D trên BC. Cm tam giác ABD = tam giác HBD
d. So sánh HQ và HC
cho tam giác abc có ab=6cm ac=8cm bc=10cm
a) hãy chứng minh abc là tam giác vuông
b) trên cạnh bc lấy e sao cho be=ba kẻ ed vuông góc ac (d thuộc ac)
chứng minh rằng bd là tia phân giác của b
c) gọi f là giao điểm của ed và ba .chứng minh rằng tam giác dec = tam giác daf từ đó suy ra df> de
d) cmr:ad vuông góc với cf
Cho tam giác ABC vuông tại A, có AB=5cm, BC=13cm. Ba đường trung tuyến AM, BN, CE cắt nhau tại O.
a) Tính AM, BN, CE
b) Tính diện tích tam giác BOC
Chọn đáp án sai
Cho tam giác ABC đều là tam giác có
A. Ba cạnh bằng nhau
B. Ba góc bằng nhau
C. Tam giác cân có một góc 60 độ
D. Tam giác vuông cân
cho tam giác ABC vuông tại A có AB = 6cm ; BC = 10cm trên cạnh BC lấy điểm D sao cho BD = 6cm vẽ đường vuông góc với BC cắt cạnh AC tại M câu a tính AC câu b tính chu vi tam giác ABC câu c chứng minh BM là đường phân giác của tam giác ABC
Tam giác có độ dài ba cạnh sau là tam giác vuông không ? Vì sao ?
a) 5cm, 6cm, 7cm
b) 7cm, 24cm, 25cm
Bài 3: Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm. a) Tính độ dài AC. b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh: ΔABD = ΔEBD và AE ⊥ BD. c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC. d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng.
Cho tam giác ABC vuông tại A có góc ABC=60độ.
a)Tính số đo góc ACB và so sánh độ dài hai cạnh AB, AC
b) Gọi M là trung điểm AC. Kẻ đường thẳng vuông góc với AC tại M, đường thẳng này cắt BC tại N, Chứng minh tam giác AMN= tam giác CMN
c)Chứng minh tam giác ABN là tam giác đều
d)Gọi G là giao điểm của AN và BM, Chứng minh BC=6.GN