Hình tự kẻ nhé :)
a) Xét hai tam giác BEA và tam giác BEK, có :
Góc BAE = DAE ( vì BD là phân giác góc B )
BE chung
góc AEB = góc KEB (giả thiết)
Vậy tam giác ABE = tam giác KBE (trường hợp góc cạnh góc)
Suy ra BA = BK => tam giác ABK cân tại B
b)Xét tam giác BAD và tam giác BKD
ta có: BD là cạnh chung
góc ABD = góc KBD
Vậy tam giác BAD = tam giác BKD (trường hợp cạnh huyền góc nhọn của tam giác vuông)
Suy ra góc BKD = góc BAD = 90 độ => DK vuông góc BC
c) Ta có: tam giác ABE = tam giác KBE (cmt)
=> AE = KE (2 cạnh tương ứng), mà E thuộc AK (gt)
=> E là trung điểm của AK (t/c)
Mà BE vuông góc với AK tại E (gt)
=> BE là đường trung trực của đoạn AK (t/c)
Có D thuộc BE => ED là đường trung trực của AK
=> AD = KD
=> tam giác ADK cân tại D (dhnb)
=> góc KAD = góc AKD (t/c) (1)
Có AH vuông góc với BC tại H (giả thiết)
DK vuông góc với BC tại K (cmt)
Từ 2 điều đó => AH // DK (do cùng vuông góc với BC)
=> góc HAK = góc AKD (2 góc so le trong) (2)
Từ (1) và (2) => góc KAD = góc HAK (cùng = góc AKD)
mà tia AK nằm giữa 2 tia AH và AD
=> AK là tia phân giác góc HAC
Câu d:
Có AH cắt BD tại I (gt) => I thuộc BD
=> I thuộc trung trực của AK
=> IA = IK (t/c)
=> Tam giác IAK cân tại I (dhnb)
=> góc IAK = góc IKA
mà góc IAK = góc KAD (cmt)
=> góc IKA = góc KAD (= góc IAK)
mà góc IKA và góc KAD nằm ở vị trí so le trong
=> IK // AC (dhnb 2 đường thẳng //)