Sửa đề: tia AD là phân giác của góc HAB
Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{HAD}+\widehat{CDA}=90^0\)
mà góc CAD=góc CDA
nên góc BAD=góc HAD
=>AD là phân giác của góc HAB
Sửa đề: tia AD là phân giác của góc HAB
Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{HAD}+\widehat{CDA}=90^0\)
mà góc CAD=góc CDA
nên góc BAD=góc HAD
=>AD là phân giác của góc HAB
Cho ΔABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Phân giác góc B cắt AC tại D.
a/ Chứng minh ΔABD=ΔEBD và DE⊥BC.
b/ Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK=EC.
c/ Gọi M là trung điểm của KC. Chứng minh ba điểm B,D,M thẳng hàng.
Cho ΔABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE.
a) CM: BE=CD
b) CM: DE//BC
c) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Cho ΔABC vuông cân tại A , biết AB=AC=8cm
a) Tính BC
b) Từ A kẻ AM⊥BC. CMR: M là trung điểm BC
c) Từ M kẻ MN⊥AC. ΔAMN là tam giác vuông cân
d) Trên tia đối của tia MN lấy điểm E sao cho EN=NM..
cho t/g ABC cân tại đỉnh A, trung trực của cạnh AC cắt CB tại điểm D( D nằm ngoài BC). trên tia đối tia AD lấy E sao cho AE=BD. CM t/g DCE cân
Cho tam giác ABC cân tại A có góc A = 40 độ . Đường trung trực của AB cắt BC tại D . Trên tia đối tia AD lấy điểm E sao cho AE = CD a, CM tam giác BEC = tam giác CDA b, Tính các gó của tam giác BDE
Cho tam giác ABC cân tại A, đường cao AH. Kẻ HM vuông góc AB tại M; HN vuông góc AC tại N.
1. Chứng minh: BH = CH.
2. Chứng minh: AMN cân
3. Gọi P là giao điểm của MH với AC, Q là giao điểm của NH với AB, I là trung điểm của PQ. Chứng minh ba điểm N; H; I thẳng hàng.
Bài4: Cho tam giác ABC vuông tại A, có B = 60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
1/ Chứng minh: tam giác ABD = tam giác EBD.
2/ Chứng minh: tam giác ABE là tam giác đều.
3/ Tính độ dài cạnh BC.
4/ Kéo dài ED cắt AB tại K. Chứng minh AE // KC
Bài 5: Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm. Kẻ AH vuông góc với BC (H € BC)
a) Chứng minh : HB = HC và CAH = BAH
b)Tính độ dài AH ?
c) Kẻ HD vuông góc AB ( D thuộc AB), kẻ HE vuông góc với AC(E thuộc AC). Chứng minh : DE//BC
Bài 6: Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng. Trên tia đối của tia DA lấy I, trên tia đối cảu tia CB lấy điểm K sao cho: DI = DA; CK = CB. Chứng minh a) AD //BC
b) tam giác ODI = tam giác OCK
c) Ba điểm K, O, I thẳng hàng
d) góc AIB = góc AKB