Tam giác ABC vuông tại AH là đường cao, vẽ đường tròn (A, AH), trên đường tròn (A, AH) lấy điểm E sao cho CE=CH
a) chứng minh :CE là tiếp tuyến (A,;AH)
b) I là trung điểm HE chứng minh ba điểm I, A, C thẳng hàng
C) Vẽ tiếp tuyến BD với đường tròn (A; AH). Chứng minh :góc CAE +góc BAD =90 độ
d) chứng minh ED là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
d) trong trường hợp AH =8cm, góc BCA=30 độ. Tính diện tích tứ giác AHCE
GIUP MK với ạ!!!!! Mk đang cần gấp
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A, bán kính AH, kẻ các tiếp tuyến BD, CE với đường tròn tâm A ( D, E là các tiếp điểm khác H). CMR:
a, 3 điểm D, A, E thẳng hàng
b, Biết BH=2cm, HC=8cm hãy tính DE
c, Góc DHE =90 độ
d, DE tiếp xú với đường tròn có đường kính BC
Cho tam giác ABC vuông tại A, AB=18cm, BC=30cm. Kẻ đường cao AH, vẽ đường tròn tâm A bán kính AH. Từ B và C vẽ các tiếp tuyến BE và CF với đường tròn tâm A ( E, F là các tiếp điểm).
a) Chứng minh ba điểm E, A ,F thẳng hàng
b) Chứng minh EF là tiếp tuyến của đường tròn đường kính BC
Câu 4 (3.5 điểm) Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A, bán kính AH, kẻ các tiếp tuyến BD, CE với đường tròn tâm A (D, E là các tiếp điểm khác H). CMR:
a) Ba điểm D, A, E thẳng hàng; b) Biết BH=2 cm, HC = 8 cm hãy tính DE?
c) 𝐷𝐻𝐸̂ =900 d) DE tiếp xúc với đường tròn có đường kính BC.
Câu 4: Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH.
1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH.
2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D.
a) Chứng minh BD là tiếp tuyến của đường tròn (C).
b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2 PE.QF = EF
Cho △ABC có ba cạnh AB=3, AC=4, BC=5.
1)Chứng minh △ABC vuông. Tính SinB.
2)Từ A hạ đường cao AH, vẽ đường tròn tâm A bán kính AH (A;AH). Kẻ các tiếp tuyến BD, CE với đương tròn. Chứng minh rằng:
a.ADE thẳng hàng.
b.DE tiếp xúc với đường tròn đường kính BC.
Cho tam giác ABC cân tại A có góc A bé hơn 90 độ có các đường cao AD và BE cắt nhau tại H. Gọi O là trung điểm của AB
a,Chứng minh ba điểm A,E,H cùng thuộc một đường tròn và Chứng minh tứ giác ABCD nội tiếp
b, DE là tiếp tuyến của đường tròn tâm O
c, Chứng minh tam giác CDE đồng dạng tam giác CAB
cho tam giác đều nội tiếp đường tròn (o;r). đường thẳng vuông góc với ac tại a cắt (o) tại d, cắt tiếp tuyến của đường tròn (o) tại e . gọi m là trung điểm của ce và f của ac và bd .a) chứng minh :am là tiếp tuyến của đường tròn (o) b) tứ giác amcb là hình gì? vì sao? c) chứng minh: bc//ef e) chứng minh: c,d,e,f cùng thuộc một đường tròn f) tính cf,de theo r