a) \(\Delta ABC\) vuông tại A có:
\(AB^2+AC^2=BC^2\) (ĐL Pi-ta-go)
\(\Rightarrow AC^2=BC^2-AB^2=20^2-12^2=256\)
\(\Rightarrow AC=16\)cm
b) Xét \(\Delta ABD\) và \(\Delta EBD\) có:
AB = BE (gt)
\(\widehat{B_1}=\widehat{B_2}\) (BD là p/g \(\widehat{ABE}\))
BD: cạnh chung
=> \(\Delta ABD\) = \(\Delta EBD\) (c.g.c)
c) Vì \(\Delta ABD\) = \(\Delta EBD\) (cmt)
=> \(\widehat{BAD}=\widehat{BED}\) (2 góc t/ư)
=> \(\widehat{BED}=90^o\) (do \(\widehat{BAD}=90^o\) do \(\Delta ABC\) vuông tại A)
mà \(\widehat{BED}+\widehat{DEC}=180^o\) (2 góc kề bù)
=> \(\widehat{DEC}=90^o\)