cho tam giác ABC có cạnh AB=6, AC=8, \(\widehat{BAC}=60\). Trên cạnh BC lấy M sao cho BM=3MC. TÍnh độ dài đoạn AM
cho tam giác ABC , M là một điểm trên đoạn BC sao cho MB=2MC : CMR
AM=\(\dfrac{1}{3}\)AB+\(\dfrac{2}{3}\)AC
1. Cho tam giác ABC có trọng tâm G M là trung điểm BC I là điểm đối xứng với B qua G . Phân tích vectơ MI theo vectơ AB và vectơ AC
2. Cho▲ABC M là trung điểm của BC sao cho MB=2MC . CMR: vecto AM=1/3 vecto AB +2/3 vecto AC
Cho tam giác ABC và M là trung điểm BC.a) Chứng minh rằng: \(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{BM}+\overrightarrow{AC}\)b) Cho hai điểm E,K thỏa mãn: \(\overrightarrow{EA}=-3\overrightarrow{EM}\) và \(5\overrightarrow{AK}=3\overrightarrow{AC}\). Chứng minh ba điểm B,E,K thẳng hàng.
Cho ΔABC, M là 1 điểm trên cạnh BC sao cho MB = 2MC. Chứng minh rằng:
\(\overrightarrow{AM}\)= \(\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)
giải hộ mik bài này với
Cho △ABC . Hãy xác định điểm M sao cho :
a) vec tơ MA - vec tơ MB + vec tơ MC = vec tơ 0 b) vec tơ MB - vec tơ MC + vec tơ BC = vec tơ 0
c) vec tơ MB - vec tơ MC + vec tơ MA = vec tơ 0 d) vec tơ MA - vec tơ MB - vec tơ MC = vec tơ 0
e) vec tơ MC + vec tơ MA - vec tơ MB + vec tơ BC = vec tơ 0
cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
Cho tam giác ABC vuông tại B có A=60 độ. Gọi M là trung điểm cạnh BC, N là điểm thỏa mãn\(\overrightarrow{AN}=\dfrac{2}{5}\overrightarrow{AC}\)
Chứng minh AM vuông góc với BN