Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
Giải các phương trình sau:
a) \(\sqrt{x-1}+\sqrt{x-2}=\sqrt{x+1}\)
b) \(x^2+2x+3\sqrt{x^2+2x+2}-6=0\)
c) \(\sqrt{\left(x+1\right)\left(2-x\right)}-1+2x=2x^2\)
d) \(\sqrt{\frac{2x}{x+1}}+\sqrt{\frac{x+1}{2x}}=2\)
Giải phương trình:
a. \(4\sqrt{x+1}-1=3x+2\sqrt{1-x}+\sqrt{1-x^2}\)
b. \(\left(x+2\right)\left(\sqrt{2x+3}-2\sqrt{x+1}\right)+\sqrt{2x^2+5x+3}-1=0\)
Giải phương trình sau
\(\dfrac{2x+1}{x-1}+\sqrt{\dfrac{2x+1}{x-1}}-3=0\)
Giải phương trình sau :
\(\sqrt{x}+\sqrt{2x-1}+x^2+x-4=\text{0}\)
Tìm x:
a.\(\sqrt{4-\sqrt{4+x}}=x\)
b.\(4\left(\sqrt{x-1}-3\right)x^2+\left(13\sqrt{x+1}-8\right)x-4\sqrt{x-1}-3=0\)
c.\(\sqrt{2x-3}+2\sqrt{x-3}\ge3\sqrt[4]{2x^2+x-6}\)
Giai pt
1,\(\sqrt{x+8-6\sqrt{x-1}}\)=4
2,\(\sqrt{x+6-2\sqrt{x+2}}\)+\(\sqrt{x+11-6\sqrt{x+2}}\)=1
3,\(\sqrt{x-3-2\sqrt{x-4}}\)+\(\sqrt{x-4\sqrt{x-4}}\)=1
4,\(\sqrt{x-2+\sqrt{2x+5}}\)+\(\sqrt{x+2+3\sqrt{2x-5}}\)=\(\dfrac{7}{2}\)
5,\(\sqrt{2x+4+6\sqrt{2x-5}}\)+\(\sqrt{2x-4-2\sqrt{2x-5}}\)=4
6,\(\sqrt{\dfrac{1}{4}x^2+x+1}\)-\(\sqrt{6-2\sqrt{5}}\)=0
7,x+\(\sqrt{x+\dfrac{1}{2}}\)+\(\sqrt{x+\dfrac{1}{4}}\)=2
8,\(\sqrt{\left(x-1\right)+4-4\sqrt{x-1}}+\sqrt{x-1-6\sqrt{x-1+9}}\)=1
9,\(\sqrt{x+2\sqrt{x-1}}\)+\(\sqrt{x-2\sqrt{x-1}}\)=\(\dfrac{x+3}{2}\)
Cho A = \(\frac{x^2-\sqrt{x}}{x+\sqrt{x+1}}-\frac{x^2+\sqrt{x}}{x-\sqrt{x+1}}\)
Rút gọn B= 1-\(\sqrt{2}\sqrt{A+2x+\frac{1}{2}}\) với 0 \(\le\)x\(\le\)1/4
giải các phương trình : c) \(\sqrt{2x+3}\) - x = 0 ; e) \(\sqrt{3x+7}\) - \(\sqrt{x+1}\)= 2 ; f) \(\sqrt{x^2-3x+3}\) + \(\sqrt{x^2-3x-16}\) = 4 ; g) \(\sqrt{x+4}\) - \(\sqrt{1-x}\) = \(\sqrt{1-2x}\) ; h) x2 - 4\(\sqrt{x^2-2x+16}\) = 2x - 9