Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Agami Raito

\(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)

nguyễn minh
11 tháng 2 2020 lúc 22:21

ĐK: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{5x^2+14x+9}=5\sqrt{x+1}+\sqrt{x^2-x-20}\)

Bình phương 2 vế, ta đc:

\(5x^2+14x+9=25x+5+x^2-x-20+10\sqrt{\left(x+1\right)\left(x^2-x-20\right)}\)

\(\Leftrightarrow5x^2+14x+9-25x-5-x^2+x+20=10\sqrt{\left(x+1\right)\left(x+4\right)\left(x-5\right)}\)

\(\Leftrightarrow4x^2-10x+4=10\sqrt{\left(x+1\right)\left(x-5\right)\left(x+4\right)}\)

\(\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

\(\Leftrightarrow2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right);\sqrt{x+4}=b\left(b\ge3\right)\)

Khi đó,pt trở thành \(2a^2+3b^2=5ab\Leftrightarrow2a^2-2ab+3b^2-3ab=0\)

\(\Leftrightarrow2a\left(a-b\right)+3b\left(b-a\right)=0\Leftrightarrow\left(2a-3b\right)\left(a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)

Với a=b \(\Rightarrow\sqrt{x^2-4x-5}=\sqrt{x+4}\Leftrightarrow x^2-5x-9=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{61}}{2}\left(tmdk\right)\\x=\frac{5-\sqrt{61}}{2}\left(loai\right)\end{matrix}\right.\)

Với 2a=3b \(\Rightarrow2\sqrt{x^2-4x-5}=3\sqrt{x+4}\Leftrightarrow4\left(x^2-4x-5\right)=9\left(x+4\right)\)

\(\Leftrightarrow4x^2-25x-56=0\Leftrightarrow\left[{}\begin{matrix}x=8\left(tmdk\right)\\x=\frac{-7}{4}\left(loai\right)\end{matrix}\right.\)

Vậy ...

Khách vãng lai đã xóa

Các câu hỏi tương tự
Kim Trí Ngân
Xem chi tiết
GG boylee
Xem chi tiết
Kun ZERO
Xem chi tiết
Đặng Dung
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết