Ta có: \(\sqrt{5}\cdot\sqrt{8}\cdot\sqrt{10}-\sqrt{144}\)
\(=\sqrt{5\cdot8\cdot10}-12\)
\(=\sqrt{400}-12\)
=20-12=8
Ta có: \(\sqrt{5}\cdot\sqrt{8}\cdot\sqrt{10}-\sqrt{144}\)
\(=\sqrt{5\cdot8\cdot10}-12\)
\(=\sqrt{400}-12\)
=20-12=8
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
Tính hộ mình vs ạ
Tính:
\(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(C=\sqrt{\left(3-\sqrt{2}^2\right)}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(D=\sqrt{\left(5-1\right)^2}+\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(E=\left(3+\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3-\dfrac{5+\sqrt{5}}{\sqrt{5}-1}\right)\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(G=\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\)
\(H=\dfrac{10}{\sqrt{3}-1}-\dfrac{55}{2\sqrt{3}+1}\)
help
Tính:
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}-\sqrt{2}-\sqrt{10}\)
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
a) \(\sqrt{8-4\sqrt{3}}-\sqrt{8+4\sqrt{3}}\)
b) \(\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{7-4\sqrt{3}}}}}\)
c) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Dạng bài này mk chưa quen lắm mong mn giúp :)
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{9-2\sqrt{6}}-\sqrt{6}}{\sqrt{3}}\) b)\(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
c) \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\) d) \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
e) \(\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\) f) \(\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{7-4\sqrt{3}}}}}\)
Tính:
a) \(\sqrt{\sqrt{5}-2}-\sqrt{5\sqrt{5}+10}+\sqrt{4\sqrt{5}+8}\)
b) \(\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2\sqrt{2}+2}\)
\(C=\dfrac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
\(B=\dfrac{20}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
c) \(\left(\sqrt{10}+\sqrt{2}\right)\left(\sqrt{3+\sqrt{5}}\right)\left(6-2\sqrt{5}\right)\)
d) \(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{2}-\sqrt{5}\)