Đặt \(A=\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}+\sqrt{6}\)
\(\Rightarrow\sqrt{2}.A=\sqrt{8-2\sqrt{15}}+\sqrt{8+2\sqrt{15}}+2\sqrt{3}\)
\(\Rightarrow\sqrt{2}.A=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+2\sqrt{3}\)
\(\Rightarrow\sqrt{2}.A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}+2\sqrt{3}\)
\(\Rightarrow\sqrt{2}.A=0\Rightarrow A=0\)