1) \(x+\sqrt{1-x^2}< x\sqrt{1-x^2}\)
2)\(\dfrac{1}{\sqrt{2x^2+3x-3}}>\dfrac{1}{2x-1}\)
3)\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}< 2x+\dfrac{1}{2x}+4\)
giúp mình ạ
Giải các pt sau:
1. x-\(\sqrt{2x-5}\)= 4
2. 2x2-3-5\(\sqrt{2x^2+3}\)= 5
3. 2x2+3x+3=5\(\sqrt{2x^2+3x+9}\)
Cho các số thực x,y thỏa mãn: \(\dfrac{x^2+y^2}{2}=y-2x\). Chứng minh rằng:
\(\left|\sqrt{2-2x}-\sqrt{4x+6y+20}\right|=3\sqrt{2}\)
Tìm x sao cho \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
Giải PT:
a. \(2x+\dfrac{x-1}{x}-\sqrt{1-\dfrac{1}{x}}-3\sqrt{x-\dfrac{1}{x}}=0\)
b.\(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)
4) \(\dfrac{x-\sqrt{x}}{1-\sqrt{2\left(x^2-x+1\right)}}\ge1\)
5)\(x^2+x+1>3\sqrt{x}\left(x+1\right)\)
6)\(\dfrac{1}{1-x^2}>\dfrac{3x}{\sqrt{1-x^2}}-1\)
nữa ạ
1)giải pt \(\sqrt{4-x^2}+\sqrt{1+4x}+\sqrt{x^2+y^2-2y-3}=\sqrt{x^4-16}-y+5\)
2) giả sử x>z ; y>z ; z>0 .cmr \(\sqrt{z\left(x-z\right)}+\sqrt{z\left(y-z\right)}\le\sqrt{xy}\)
Help me!!!
\(\sqrt{x^2+2x}+\sqrt{x-1}\le\sqrt{6x^2+4x+1}\)\(\sqrt{4x^2+18x+18}\le\sqrt{3x^2+10x+8}+\sqrt{x+2}\)
1) tìm min \(P=\dfrac{2009x^2-6039x+6\sqrt{x^3-2x^2+2x-4}-8024}{x^2-3x-4}\)
2) cho các số thực dương a,b,c thỏa mãn a2+b2+c2=1
cm \(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)