Bài 1: Rút gọn
\(3\sqrt{9a^6}-6a^3\) (với mọi a)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}\) (Với \(\dfrac{1}{3}\) < x ≤ 1 )
\(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\) (với 1<x<2)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\) (với x ≥4)
Tính DKXD của các căn bậc thức sau:
a)\(\sqrt{2x-4}\)
b)\(\sqrt{\dfrac{3}{-2x+1}}\)
c)\(\sqrt{\dfrac{-3x+5}{-4}}\)
d)\(\sqrt{-5\left(-2x+6\right)}\)
e)\(\sqrt{\left(x^2+2\right)\left(x-3\right)}\)
f)\(\sqrt{\dfrac{x^2+5}{-x+2}}\)
tìm giá trị nhỏ nhất:
\(a,\sqrt{\left(x-2000\right)^2}+\sqrt{\left(x-2001\right)^2}\)
\(b,\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+4\right)^2}+\sqrt{\left(x+5\right)^2}\)
\(c,\sqrt{\left(2x-1\right)^2}+\sqrt{\left(3x+4\right)^2}\)
Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
Giải các phương trình sau:
a) \(x^3-6x^2+28x-25=2\left(x+1\right)\sqrt{x+2}+\left(2x-1\right)\sqrt{x-1}\)
b) \(x^3-4x^2+31x-15=2\left(x+2\right)\sqrt{3x+1}+x\sqrt{2x-1}\)
c) \(5x^2+4x+4=2\left(x+2\right)\sqrt{x+3}+x\sqrt{3x-2}\)
Rút gon A=\(\sqrt[3]{\dfrac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\dfrac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)
giải hệ pt:
\(\left\{{}\begin{matrix}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\end{matrix}\right.\)
1. \(x^4-x^2+3x+5=2\sqrt{x+2}\)
2. \(\sqrt{x^2+x}+\sqrt{x-x^2}=2x+2\)
3. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
4. \(\sqrt{2x^2-1}+\sqrt{x^2-3x+2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)