Bài : Thu gọn
1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}\)
2) \(\dfrac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)
3) \(\dfrac{7+4\sqrt{3}}{2+\sqrt{3}}\)
4) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
5) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
6) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6-2\sqrt{10}}}\)
1. A=\(\sqrt{4+\sqrt{7}}\) +\(\sqrt{4-\sqrt{7}}\)
2. B= \(\dfrac{\sqrt{\sqrt{7-\sqrt{3}}-\sqrt{7+\sqrt{3}}}}{\sqrt{7-\sqrt{2}}}\)
3. C=\(\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)
4. D=\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
5 E=\(\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\) +\(\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
6. so sánh Cho A=\(\sqrt{11+\sqrt{96}}\)
B= \(\dfrac{2\sqrt{2}}{1+\sqrt{2-\sqrt{3}}}\) so sánh A và b
rút gọn các biểu thức sau:
\(\dfrac{1}{2}\sqrt{20}+5\)
\(\sqrt{16}+\sqrt{64}\)
\(\sqrt{20}-\sqrt{45}+3\sqrt{18}\)
\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{2}\)
A= \(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\)
B=\(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
mình cần gấp á. tại vì mình khá là ngu toán nên giúp mik vs
Rút gọn các biểu thức:
1. \(\sqrt{28}-2\sqrt{252}+3\sqrt{175}+3\sqrt{567}\)
2. \(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{7-4\sqrt{3}}\)
3. \(\sqrt{9-4\sqrt{5}}-\sqrt{\dfrac{8}{7-3\sqrt{5}}}\)
4. \(\dfrac{\sqrt{3}}{2-\sqrt{3}}+\dfrac{2}{2+\sqrt{3}}\)
5. \(\dfrac{2\sqrt{2}+1}{1+\sqrt{2}}+\dfrac{1-2\sqrt{2}}{1-\sqrt{2}}+\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)\)
6. \(\sqrt{\dfrac{2}{3-\sqrt{5}}}+\sqrt{\dfrac{2}{7+\sqrt{45}}}\)
7. \(\dfrac{\sqrt{2}}{\sqrt{1+\sqrt{2}}-1}-\dfrac{\sqrt{2}}{\sqrt{1+\sqrt{2}}+1}\)
8. \(\sqrt{6-2\sqrt{5}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)
tính giá trị biểu thức :
a, \(\left(\sqrt{28}+2\sqrt{14}+\sqrt{7}\right)\sqrt{7}-\left(7+\sqrt{2}\right)^2\)
b, \(\sqrt{\dfrac{5}{2}}+\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{5}}\)
c, \(\dfrac{8+2\sqrt{15}}{\sqrt{5}+\sqrt{3}}+\dfrac{7-2\sqrt{10}}{\sqrt{5}-\sqrt{2}}\)
d,\(\dfrac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
1. A=\(\sqrt{4+\sqrt{ }7}\)+ \(\sqrt{4-\sqrt{ }7}\) 2. B=\(\dfrac{\sqrt{\sqrt{7-\sqrt{3}}}-\sqrt{\sqrt{7+\sqrt{3}}}}{\sqrt{\sqrt{7}-\sqrt{2}}}\) 3. C=\(\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\) 4. D=\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\) 5. so sánh Cho A=\(\sqrt{11+\sqrt{96}}\) B=\(\dfrac{2\sqrt{2}}{\sqrt{1+\sqrt{2-\sqrt{3}}}}\) so sánh A và B
Rút gọn căn thức sau:
\(B= \dfrac{\sqrt{7-\sqrt{5}}+\sqrt{7+\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Rút gọn:
1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}\)
2) \(\dfrac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)
3) \(\dfrac{7+4\sqrt{3}}{2+\sqrt{3}}\)
Rút Gọn Biểu Thức
A=\(\sqrt{7+3\sqrt{5}}+\sqrt{7-3\sqrt{5}}\)
B=\(\sqrt{2-\sqrt{2\sqrt{5}-2}}-\sqrt{2+\sqrt{2\sqrt{5}-2}}\)