Tính ;
a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}.}\sqrt{2-\sqrt{2+\sqrt{2}}}\)
b) \(\sqrt{47+\sqrt{5}}.\sqrt{7-\sqrt{2+\sqrt{5}}}.\sqrt{7+\sqrt{2+\sqrt{5}}}\)
c) \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
d) \(\sqrt{31+\sqrt{2}}.\sqrt{6+\sqrt{5+\sqrt{2}}}\sqrt{3+\sqrt{3+\sqrt{5+\sqrt{2}}}}.\sqrt{3-\sqrt{3+\sqrt{5+\sqrt{2}}}}\)
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(\sqrt{2+\sqrt{2}}.\sqrt{3+\sqrt{7+\sqrt{2}}}.\sqrt{3+\sqrt{6+\sqrt{7+\sqrt{2}}}}.\sqrt{3-\sqrt{6+\sqrt{7+\sqrt{2}}}}\)
Tính:
a)\(\sqrt{3\sqrt{2}-2\sqrt{3}}\cdot\sqrt{3\sqrt{2}+2\sqrt{3}}\)
b) \(\sqrt{2+2\sqrt{2-\sqrt{2}}}\cdot\sqrt{2-2\sqrt{2-\sqrt{2}}}\)
c)\(\left(\sqrt{2}-\sqrt{7}\right)\sqrt{9+2\sqrt{14}}\)
Tính:
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
So sánh A = 2\(\sqrt{1}+2\sqrt{3}+2\sqrt{5}+2\sqrt{7}+2\sqrt{9}+2\sqrt{11}+2\sqrt{13}+2\sqrt{15}+2\sqrt{17}+2\sqrt{19}\) và B = \(2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+2\sqrt{8}+2\sqrt{10}+2\sqrt{12}+2\sqrt{14}+2\sqrt{16}+2\sqrt{18}+2\sqrt{20}\)
Rút gọn\(\dfrac{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}+\dfrac{\sqrt{2+\sqrt{3}-\sqrt{2-\sqrt{3}}}}{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}\)
Rút gọn : \(\dfrac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
D = \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)
F = \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
B = \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\)
E = \(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
Tính:
a) \(\sqrt{\sqrt{5}-2}-\sqrt{5\sqrt{5}+10}+\sqrt{4\sqrt{5}+8}\)
b) \(\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2\sqrt{2}+2}\)
1) \(\sqrt{7-2\sqrt{10}}\) - \(\sqrt{7+2\sqrt{10}}\)
2) \(\sqrt{4-2\sqrt{3}}\) + \(\sqrt{4+2\sqrt{3}}\)
3) \(\sqrt{6-4\sqrt{2}}\) + \(\sqrt{22-12\sqrt{2}}\)