\(\sqrt{18+12\sqrt{2}}\)
\(=\sqrt{6\cdot\left(3+2\sqrt{2}\right)}\)
\(=\sqrt{6\cdot\left[\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2\right]}\)
\(=\sqrt{6\left(\sqrt{2}+1\right)^2}\)
\(=\sqrt{6}\cdot\left|\sqrt{2}+1\right|\)
\(=\sqrt{6}\cdot\left(\sqrt{2}+1\right)\)
\(=\sqrt{12}+\sqrt{6}\)
\(=2\sqrt{3}+\sqrt{6}\)
\(\sqrt{18+12\sqrt{2}}\)
\(=\sqrt{6\left(3+2\sqrt{2}\right)}=\sqrt{\left(\sqrt{6}\cdot\sqrt{2}+\sqrt{6}\right)^2}\)
\(=\left|\sqrt{12}+\sqrt{6}\right|=2\sqrt{3}+\sqrt{6}\)