a. Theo giả thiết: \(x_1=4\cos(\dfrac{\pi}{6}t_1)=2\sqrt 3\) và $x$ đang giảm, nên ta biểu diễn dao động này bằng véc tơ quay:
Thời điểm $t_1$, véc tơ quay tại vị trí M.
Sau thời điểm $t_1$ một khoảng $\Delta t = 3s$, véc tơ quay đã quay 1 góc là:
\(\alpha = \omega.t = \dfrac{\pi}{6}.3=\dfrac{\pi}{2}(rad)\)
Lúc này, véc tơ quay đã quay đến N. Từ giản đồ véc tơ ở trên ta suy ra li độ: $x = -2cm$
b. Bước sóng: \(\lambda=v.t=2.12=24cm\)
Điểm M trễ pha hơn O là: \(\Delta \varphi = \dfrac{2\pi.d}{\lambda}=\dfrac{2\pi.40}{24}=\dfrac{10\pi}{3}(rad)\)
Biểu diễn trạng thái dao động của M theo O ở thời điểm $t_1$ trên giản đồ véc tơ, ta có:
Từ giản đồ trên dễ dàng suy được li độ của M là \(-2\sqrt 3cm\)