\(2^0+2^1+2^2+...+2^{21}=2^{2n}-1\)
Đặt \(A=2^0+2^1+2^2+...+2^{21}=2^{2n}-1\)
Ta có: \(A=2^0+2^1+2^2+...+2^{21}\)
\(\Rightarrow2A=2^1+2^2+2^3+...+2^{22}\)
\(\Rightarrow2A-A=\left(2^1+2^2+2^3+...+2^{22}\right)-\left(2^0+2^1+2^2+...+2^{21}\right)\)
\(\Rightarrow A=2^{22}-2^0\)
\(\Rightarrow A=2^{22}-1\)
Mà \(A=2^{2n}-1\)
\(\Rightarrow2^{22}-1=2^{2n}-1\)
\(\Rightarrow2^{22}=2^{2n}\)
\(\Rightarrow2n=22\)
\(\Rightarrow n=11\)
Vậy n = 11