\(\dfrac{1}{2}+\dfrac{1}{n}>\dfrac{1}{4}+\dfrac{2}{5}\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{n}>0,65\)
\(\Leftrightarrow\dfrac{1}{n}>\dfrac{3}{20}\Leftrightarrow\dfrac{20}{20n}>\dfrac{3n}{20n}\Rightarrow20>3n\Rightarrow n< 7\)
vậy n = 6
\(\dfrac{1}{2}+\dfrac{1}{n}>\dfrac{1}{4}+\dfrac{2}{5}\\\)
<=> \(0.5+\dfrac{1}{n}>0.25+0.4\) <=> \(0.5+\dfrac{1}{n}>0.65\) <=> 1/n >0.15 <=>n=6
1/2 +1/n =0.5+1/n
1/4+1/2=13/20=0.65
<=>0,5+1/n >0,65
<=> 1/n >0,15
<=> n=5 hoặc n=6
theo đầu bài, tìm số lớn nhất, vậy n=6