Tìm GTNN và GTLN của P= x/y+1+y/x+1. Biết x,y không âm và x+y=1
Cho biết : \(x+y+z=1\)( x, y, z là số dương)
Chứng minh:
\(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\text{≤}\dfrac{3}{4}\)
cho x, y la cac so ko am thoa man x+y<=2
cmr\(\frac{2+x}{1+x}+\frac{1-2y}{1+2y}>=\frac{8}{7}\)
Biết x>y>0 và 3x2+3y2=10xy tính P= y-x phần y+x.
2) Cho các số x, y, z khác o. Biết rằng x(1/x + 1/y) + y(1/z + 1/x) + z(1/x + 1/y) = -2 và x3 + y3 + z3. Tính P = 1/x + 1/y 1/z
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
Thực hiện các phép tính sau:
a,(\(\dfrac{x}{x+1}\)+\(\dfrac{x-1}{x}\)):(\(\dfrac{x}{x+1}\)-\(\dfrac{x-1}{x}\))
b,(1+\(\dfrac{x}{y}\)+\(\dfrac{x^2}{y^2}\)).(1-\(\dfrac{x}{y}\)).\(\dfrac{y^2}{x^3-y^3}\)
Cho x,y>0. CMR: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
Rút gọn:
\(\left[\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{x+y}\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\right]:\dfrac{x^3+y^3}{x^2y^2}-\dfrac{x+y}{x^2-xy+y^2}\)
Rút gọn:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]\cdot\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)