Cho \(A=\sqrt{625}-\dfrac{1}{\sqrt{5}};B=\sqrt{576}-\dfrac{1}{\sqrt{6}}+1\)
Hãy so sánh A và B
So sánh : \(\sqrt{12}\) và \(\sqrt{17}\)
So sánh \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}\) và \(19\)
Không dùng bảng số hoặc máy tính, hãy so sánh :
\(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\)
So sánh:
a, \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\);
b, \(\sqrt{7}+\sqrt{15}\) và \(7\)
c, \(\sqrt{625}-\dfrac{1}{\sqrt{5}}\) và \(\sqrt{576}-\dfrac{1}{\sqrt{6}}+1\)
Bài 1 : So sánh \(\dfrac{-\sqrt{10}}{2}và-2\sqrt{5}\)
So sánh
a)\(\sqrt{35}+\sqrt{99}v\text{à}16\)
b)\(\sqrt{24}v\text{à}\sqrt{5}+\sqrt{10}\)
Tính
\(\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}:\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]\right\}:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\)
So sánh
\(\sqrt{8}-\sqrt{5}̀\) và 1
bài 1: tính
a) 3/4+(-5/2)+(-3/5)
b) \(\sqrt{\left(7\right)^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}\)
c)\(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}\)