Ta có :
\(\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)=15-\dfrac{1}{\sqrt{13}}+1=16-\dfrac{1}{\sqrt{13}}\)
\(\sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)=17-\dfrac{1}{\sqrt{14}}-1=16-\dfrac{1}{\sqrt{14}}\)
Vì 13 < 14 \(\Rightarrow\sqrt{13}< \sqrt{14}\)
\(\Rightarrow\dfrac{1}{\sqrt{13}}>\dfrac{1}{\sqrt{14}}\)
\(\Rightarrow16-\dfrac{1}{\sqrt{13}}< 16-\dfrac{1}{\sqrt{14}}\)
\(\Rightarrow\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)< \sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)\)
Ta có: \(\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)\)
\(=15-\dfrac{1}{\sqrt{13}}+1\)
\(=\left(15+1\right)-\dfrac{1}{\sqrt{13}}\)
\(=16-\dfrac{1}{\sqrt{13}}\)
Và: \(\sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)\)
\(=17-\dfrac{1}{\sqrt{14}}-1\)
\(=\left(17-1\right)-\dfrac{1}{\sqrt{14}}\)
\(=16-\dfrac{1}{\sqrt{14}}\)
Vì \(13< 14\Rightarrow\sqrt{13}< \sqrt{14}\Rightarrow\dfrac{1}{\sqrt{13}}>\dfrac{1}{\sqrt{14}}\Rightarrow-\dfrac{1}{\sqrt{13}}< -\dfrac{1}{\sqrt{14}}\Rightarrow16-\dfrac{1}{\sqrt{13}}< 16-\dfrac{1}{\sqrt{14}}\)
Hay \(\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)< \sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)\)
Chúc bn học tốt