Tìm điều kiện của x để phân thức sau có ý nghĩa :
a)\(\dfrac{x-2}{x-5}\) b)\(\dfrac{2x-1}{\dfrac{1}{2}x+4}\)c)\(\dfrac{5}{-2x-10}\)
B1 : Tính nhanh
A= (1+\(\dfrac{2}{4}\)).(1+\(\dfrac{2}{10}\)).(1+\(\dfrac{2}{18}\))...(1+\(\dfrac{2}{10098}\))
B2 : Cho\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)= 0
Tính \(\dfrac{bc}{a^2}\)+ \(\dfrac{ca}{b^2}\)+\(\dfrac{ab}{c^2}\)
B3 : Cho\(\dfrac{x}{x^{2^{ }}-x+1}\)=\(\dfrac{1}{3}\)
Tính S=\(\dfrac{x^2}{x^4+x^2+1}\)
\(\dfrac{x^3-4x}{10-5x}=\dfrac{-x^2-2x}{5}\)
\(\dfrac{x+2}{x-1}=\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)
\(\dfrac{x^2-x-2}{x+1}=\dfrac{x^2-3x+2}{x-1}\)
\(\dfrac{x^3+8}{x^2-2x+4}=x+2\)
Bài 1. Trong các biểu thức sau, biểu thức nào là phân thức đại số
A. \(\dfrac{\dfrac{1}{2}x+5}{3x^3+3x+12}\) B. \(\dfrac{\dfrac{1}{x}}{2x+5}\) C. 4x2 – 5y D. \(\dfrac{1+\dfrac{1}{x}}{2-\dfrac{2}{x}}\)
Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau :
a) \(\dfrac{x^2y^3}{5}=\dfrac{7x^3y^4}{35xy}\)
b) \(\dfrac{x^2\left(x+2\right)}{x\left(x+2\right)^2}=\dfrac{x}{x+2}\)
c) \(\dfrac{3-x}{3+x}=\dfrac{x^2-6x+9}{9-x^2}\)
d) \(\dfrac{x^3-4x}{10-5x}=\dfrac{-x^2-2x}{5}\)
1, Rút gọn các phân thức sau :
a, \(\dfrac{5x}{10}\)
b, \(\dfrac{4xy}{2y}\) ( y # 0)
c, \(\dfrac{21x^2y^3}{6xy}\) ( xy # 0)
d, \(\dfrac{2x+2y}{4}\)
e, \(\dfrac{5x-5y}{3x-3y}\) ( x # y)
f, \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}\) ( x # y)
2, Rút gọn các phân thức sau :
a, \(\dfrac{x^2-16}{4x-x^2}\) ( x # 0, x # 4)
b, \(\dfrac{x^2+4x+3}{2x+6}\) ( x # -3)
c, \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}\) ( y + ( x+y) # 0)
d, \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\) ( x # y)
e, \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}\) (x # -y)
Cho x,y,a,b là những số thực thỏa mãn:
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{x^2+y^2}{a+b}\)và\(x^2+y^2=1\)
Chứng minh: \(\dfrac{x^{2006}}{a^{1003}}+\dfrac{y^{2006}}{b^{1003}}=-\dfrac{2}{\left(a+b\right)^{1003}}\)
Nếu \(\dfrac{x-y}{z-y}=-10\) ( y khác z). Tính giá trị của biểu thức: \(\dfrac{x-z}{y-z}\)
cho các số nguyên dương a,b,c,d thỏa mãn a+b+x+d=4 chứng minh: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{cd}+\dfrac{1}{da}\ge a^2+b^2+c^2+d^2\)