Ta so sánh: -329 và -1813
Ta có: -329=-(25)9=-245 > -252
Mà: -252=-(24)13=-1613 > -1813
Do: 3227<1839
=> (-32)9>(-18)19. Tick đi
Ta so sánh: -329 và -1813
Ta có: -329=-(25)9=-245 > -252
Mà: -252=-(24)13=-1613 > -1813
Do: 3227<1839
=> (-32)9>(-18)19. Tick đi
So sánh:
a, \(\left(\dfrac{1}{24}\right)^9\)và \(\left(\dfrac{1}{83}\right)^{13}\)
c, \(\dfrac{1}{5^{199}}\)và\(\dfrac{1}{3^{300}}\)
So sánh:
\(\left(\dfrac{1}{10}\right)^{15}\)và \(\left(\dfrac{3}{10}\right)^{20}\)
So sánh \(\dfrac{a}{b},\left(b>0\right)\) và \(\dfrac{a+n}{b+n},\left(n\in\mathbb{N}^{\circledast}\right)\) ?
1.Tìm x :
a,\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
b,\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
c,\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}\)\(+\frac{1}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
d,\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}\)\(+\frac{15}{\left(x-13\right)\left(x-28\right)}\)\(-\frac{1}{x-38}=\frac{-1}{20}\)
Tìm GTNN của biểu thức:
a) \(\left|x+5\right|+\left|x+17\right|\)
b) \(\left|x+8\right|+\left|x+13\right|+\left|x+50\right|\)
c) \(\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\)
d) \(\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\)
Thực hiện phép tính:
a) \(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
b) \(\dfrac{3}{8}.19\dfrac{1}{3}-\dfrac{3}{8}.33\dfrac{1}{3}\)
c) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
d) \(\dfrac{21}{47}+\dfrac{9}{45}+\dfrac{26}{47}+\dfrac{4}{5}\)
e) \(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}\)
Cho \(A=\left(\dfrac{2}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)So sánh A với \(-\dfrac{1}{2}\)
\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}\)+\(\dfrac{2}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
CMR với mọi số hữu tỉ x;y thì:
a)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) \(\left|x-y\right|\ge\left|x\right|+\left|y\right|\)