Ta có: \(\frac{4^{15}}{7^{30}}\)=\(\frac{\left(2^2\right)^{15}}{7^{30}}\)=\(\frac{2^{30}}{7^{30}}\)=\(\frac{\left(2^3\right)^{10}}{7^{30}}\)=\(\frac{8^{10}}{7^{30}}\)
\(\frac{8^{10}.3^{10}}{7^{30}.4^{15}}\)=\(\frac{\left(2^3\right)^{10}.3^{10}}{7^{30}.\left(2^2\right)^{15}}\)=\(\frac{2^{30}.3^{10}}{7^{30}.2^{30}}\)=\(\frac{3^{10}}{7^{30}}\)
Vì 810>310 \(\Rightarrow\)\(\frac{8^{10}}{7^{30}}\)>\(\frac{3^{10}}{7^{30}}\)
Hay \(\frac{4^{15}}{7^{30}}\)>\(\frac{8^{10}.3^{10}}{7^{30}.4^{15}}\)