Lời giải:
Đặt $\sqrt{2009}=a; \sqrt{2011}=b$. Khi đó ta cần so sánh \(\frac{a^2}{b}+\frac{b^2}{a}\) và $a+b$ với $a\neq b; a,b>0$
Ta có:
\(\frac{a^2}{b}+\frac{b^2}{a}-(a+b)=\frac{a^3+b^3-ab(a+b)}{ab}=\frac{(a-b)^2(a+b)}{ab}>0\) với mọi $a,b>0$ và $a\neq b$
Do đó $\frac{a^2}{b}+\frac{b^2}{a}>a+b$
Hay $\frac{2009}{\sqrt{2011}}+\frac{2011}{\sqrt{2009}}>\sqrt{2009}+\sqrt{2011}$