Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiki :))

So sánh: 

\(C=\dfrac{2019-2018}{2018+2019}\) và \(D=\dfrac{2019^2-2018^2}{2019^2+2018^2}\)

Nguyễn Lê Phước Thịnh
12 tháng 2 2021 lúc 9:55

Ta có: \(C=\dfrac{2019-2018}{2019+2018}\)

\(\Leftrightarrow C=\dfrac{\left(2019-2018\right)\left(2019+2018\right)}{\left(2019+2018\right)^2}\)

\(\Leftrightarrow C=\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}\)

Ta có: \(\left(2019+2018\right)^2=2019^2+2018^2+2\cdot2019\cdot2018\)

\(2019^2+2018^2=2019^2+2018^2+0\)

Do đó: \(\left(2019+2018\right)^2>2019^2+2018^2\)

\(\Leftrightarrow\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}< \dfrac{2019^2-2018^2}{2019^2+2018^2}\)

\(\Leftrightarrow C< D\)


Các câu hỏi tương tự
Anh Duy
Xem chi tiết
Thỏ bông
Xem chi tiết
Măm Măm
Xem chi tiết
Đinh Bạt Mạnh Dũng
Xem chi tiết
Nguyễn Minh Nhật
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Ngô Võ Hoàng Yến
Xem chi tiết
NGUYỄN QUỲNH ANH
Xem chi tiết
kẻ giấu tên
Xem chi tiết