tính nhanh:a,2018^2-2017*2019
b,2018^3+1/2018-2017
M=(x+y)2017+(x-2)2018+(y+1)2019
Cho a,b,c >0
a^2+b^2+c^2=a^3+b^3+c^3=1
Tính A=a^2017+b^2018+c^2019
Giải các phương trình sau:
a) \(\left(\frac{x-2}{x-1}\right)^2-5\left(\frac{x+2}{x+1}\right)^2+4\left(\frac{x^2-4}{x^2-1}\right)=1\)
b) \(\left(\frac{x-1}{x}\right)^2+\left(\frac{x-1}{x-2}\right)^2=\frac{40}{9}\)
c) \(x.\frac{4-x}{x+2}.\left(\frac{8-2x}{x+2}\right)=3\)
d) \(\frac{1}{3x-2020}+\frac{1}{4x-2018}+\frac{1}{5x-2017}=\frac{1}{12x-2019}\)
cho x,y,z t/m \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)
tính \(x^{2017}+y^{2018}+z^{2019}\)=P
So sánh:
\(C=\dfrac{2019-2018}{2018+2019}\) và \(D=\dfrac{2019^2-2018^2}{2019^2+2018^2}\)
Cho đa thức f(x) = x2020 - 2x2019 - x2018 + 5x2 -10x + 3. Tính f(1-\(\sqrt{2}\)).
Giải phương trình : \(\dfrac{2-x}{2017}+1=\dfrac{x-1}{2018}-\dfrac{x}{2019}\)
1)Cho số thực x, y, z thỏa mãn:
2x2+y2+z2-2xy-2x+1=0. Tính:
A=x2018+y2019+z2020
2) cho số thực ạ, b, c thỏa mãn:
a+b+c=6 và a2+b2+c2=12. Tính:
P=(a-3) 2019+(b-3) 2019+(c-3) 2019