\(72^{45}>72^{44}\)
\(\Rightarrow72^{45}-72^{43}>72^{44}-72^{43}\)
Vậy...
Dễ quá:
Do \(72^{45}>72^{44}=>72^{45}-72^{43}>72^{44}-72^{43}\)
Ta có:
+) \(72^{45}-72^{43}=\left(72^2-1\right)\cdot72^{43}\)
+) \(72^{44}-72^{43}=\left(72-1\right)\cdot72^{43}\)
Mà \(72^2>72\)
do đó: \(\left(72^2-1\right)\cdot72^{43}>\left(72-1\right)\cdot72^{43}\)
Suy ra: \(72^{45}-72^{43}>72^{44}-72^{43}\)