TA có :
A = \(\dfrac{54.107-53}{53.107+54}\)= \(\dfrac{53.107+107-53}{53.107+54}\)=
\(\dfrac{53.107+54}{53.107+54}\)= 1 (1)
B = \(\dfrac{135.269-133}{134.269+135}\)=
\(\dfrac{134.269-269-133}{134.269-133}\)= \(\dfrac{134.269+136}{134.269+135}\)>1 (2)
Từ (1) và (2)
=> A > B
Ta có: \(A=\dfrac{54\cdot107-53}{53\cdot107+54}=\dfrac{53\cdot107+157-53}{53\cdot107+54}=\dfrac{53\cdot107+54}{53\cdot107+54}=1\) (1)
\(B=\dfrac{135\cdot269-133}{134\cdot269+135}=\dfrac{134\cdot269+269-133}{134\cdot269+135}=\dfrac{134\cdot269+136}{134\cdot269+135}>1\) (2)
Từ (1) và (2) suy ra: \(A< B\)
Vậy \(A< B\).