-2024/2023<-1
-1<-2023/2024
=>-2024/2023<-2023/2024
-2024/2023<-1
-1<-2023/2024
=>-2024/2023<-2023/2024
Cho \(A=1 +\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{2023}-1}\) CMR: \(A>\dfrac{2023}{2}\)
c/m rằng : \(\dfrac{1}{65}\) <\(\dfrac{1}{5^3}\) +\(\dfrac{1}{6^3}\)+\(\dfrac{1}{7^3}\) +....+\(\dfrac{1}{2023^3}\) <\(\dfrac{1}{40}\)
biết a2 +ab+\(\dfrac{b^2}{3}\) =2023; c2+\(\dfrac{b^2}{3}\) =2000;a2+ac+c2=23 và a\(\ne\) 0;c\(\ne\)0;a\(\ne\) -c
c/m \(\dfrac{2c}{3}\) =\(\dfrac{b+c}{a+c}\)
So sánh hai phân số sau:
\(\dfrac{121212}{131313}\) và \(\dfrac{12}{13}\)
Tìm tất cả các cặp số \(\left(x,y\right)\) thoả mãn: \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}\le0\)
Sử dụng tính chất bắc cầu để so sánh các phân số sau:
a) \(\dfrac{1997}{1996}và\dfrac{1996}{1997}\)
b) \(\dfrac{3}{5}và\dfrac{15}{13}\)
các tỉ số sau đây có lập thành tỉ lệ thức không? vì sao?
a,\(\dfrac{15}{21}\) và \(\dfrac{30}{42}\) b, 0,25 : 1,25 và \(\dfrac{1}{7}\) c, 0,4 : \(1\dfrac{2}{5}\) và \(\dfrac{3}{5}\)
d,\(\dfrac{3}{5}\):\(\dfrac{1}{7}\) và 21 :\(\dfrac{1}{5}\) e, \(4\dfrac{1}{2}:7\dfrac{1}{2}\) và 2,7 : 4,7 f, \(\dfrac{1}{4}:\dfrac{1}{9}\) và \(\dfrac{1}{2}:\dfrac{2}{9}\)
g,\(\dfrac{2}{7}:\dfrac{4}{11}\) và \(\dfrac{7}{2}:\dfrac{4}{11}\) h,\(\dfrac{2}{5}:\dfrac{10}{2}\) và \(\dfrac{2}{1}:\dfrac{1}{4}\) i, \(\dfrac{2}{7}:\dfrac{7}{4}\) và \(\dfrac{16}{49}\): 2
Cho A= 1 + \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4034}\); B = 1 + \(\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4033}\)
So sánh \(\dfrac{A}{B}\)với 1\(\dfrac{2017}{2018}\)
s=\(\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{n+1}{2^n}+...+\dfrac{2016}{2^{2015}}\)
xét tổng S gồm 2015 số hạng sau . Hay so sánh S với 3