Lời giải:
\(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)
Dễ thấy $0< 2019^2< 2019^4\Rightarrow \frac{4}{2019^2}> \frac{4}{2019^4}$
$\Rightarrow A-B=\frac{4}{2019^2}-\frac{4}{2019^4}>0$
$\Rightarrow A>B$
Lời giải:
\(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)
Dễ thấy $0< 2019^2< 2019^4\Rightarrow \frac{4}{2019^2}> \frac{4}{2019^4}$
$\Rightarrow A-B=\frac{4}{2019^2}-\frac{4}{2019^4}>0$
$\Rightarrow A>B$
Cho \(A=1-\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2-\left(\frac{2019}{2020}\right)^3+...+\left(\frac{2019}{2020}\right)^{2020}\). Chứng tỏ A ko phải là 1 số nguyên.
Mk cần gấp. Mai nộp rồi!!!
So sánh \(A=\frac{2^{2019}}{2^{2019}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2019}}+\frac{5^{2019}}{5^{2019}+2^{2019}}\)với \(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)
B1 : Tìm GTNN :
\(\left(x+2020\right)^4+\left|y-2019\right|-2018\)
B2 : Tính :
\(P=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{2019}.\left(1+2+3+...+2019\right)\)
\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2019}}+\frac{1}{3^{2020}}< \frac{1}{2}\)
a)\(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\)
b)\(\frac{x+6}{2015}+\frac{x+5}{2016}+\frac{x+4}{2017}=\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2010}\)
c)\(\frac{x+6}{2016}+\frac{x+7}{2017}+\frac{x+8}{2018}=\frac{x+9}{2019}+\frac{x+10}{2020}+1\)
d)\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
ai xong nhanh nhất và đúng em xin gửi 2 SP ạ
Câu 1.
a) \(32\frac{1}{4}:\frac{5}{7}-42\frac{1}{4}:\frac{5}{7}\)
b) \(1\frac{3}{4}+\frac{-5}{6}.\sqrt{-6^2}-2019^{0^{ }}.\sqrt{\frac{49}{16}}\)
Tính B=\(2020.\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).....\left(\frac{1}{2019}-1\right)\left(\frac{1}{2020}-1\right)\)
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
Tính :
A = \(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\right).\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)-\)\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right).\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\right)\)
Giúp em với ạ @Nguyễn Việt Lâm,@Akai Haruma